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ABSTRACT
A comparative genetic map was constructed between two important genera of the family Pinaceae. Ten

homologous linkage groups in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii [Mirb.]
Franco) were identified using orthologous expressed sequence tag polymorphism (ESTP) and restriction
fragment length polymorphism (RFLP) markers. The comparative mapping revealed extensive synteny and
colinearity between genomes of the Pinaceae, consistent with the hypothesis of conservative chromosomal
evolution in this important plant family. This study reports the first comparative map in forest trees at
the family taxonomic level and establishes a framework for comparative genomics in Pinaceae.

THE essence of comparative genome analysis is the notably Brassicaceae (Paterson et al. 2000; Barnes
2002; Hall et al. 2002), Solanaceae (Doganlar et al.extrapolation of information from one organism to

another. Comparative mapping and comparative sequence 2002), Fabaceae (Boutin et al. 1995; Yan et al. 2003),
and Poaceae (Feuillet and Keller 2002; Laurie andanalysis are the key components of comparative geno-

mics. Comparative mapping establishes the syntenic re- Devos 2002; Ware et al. 2002; Ware and Stein 2003).
lationships between genomes of different species, assisting A comparative map framework among these taxa facili-
in genetic map consolidation, verification of quantitative tates the transfer of information across species and en-
trait loci (QTL), identification of candidate genes un- ables a taxonomic family to be viewed as a single genetic
derlying QTL, and a better understanding of genome system (Freeling 2001).
evolution (Sankoff and Nadeau 2000; Kliebenstein et Pinaceae is the most important among eight families
al. 2001; Murphy et al. 2001; Zhang et al. 2001; Schmidt of the order Coniferales (conifers). This family com-
2002). prises 11 genera and 232 species distributed throughout

Comparative genome analysis is often performed be- the world (Frankis 1989), primarily in the temperate
tween model and nonmodel species (for reviews, see region of the northern hemisphere. Members of the
Paterson et al. 2000; Hall et al. 2002; Schmidt 2002). Pinaceae have large economic importance as a source of
For example, thale cress (Arabidopsis thaliana) and rice timber, pulp, and resins. They also play a very significant
(Oryza sativa) are model species for dicots and mono- ecological role by producing large biomass and creating
cots, respectively. Putative syntenic regions have been habitat for many other organisms. Forest trees of the
identified for dicots in comparisons between soybean Pinaceae are essential for carbon sequestration that may
(Glycine max), barrel medic (Medicago truncatula), cab- affect global climate.
bage (Brassica oleracea), potato (Solanum tuberosum), and Pinaceae genomes are very large compared to nearly
A. thaliana (Grant et al. 2000; Babula et al. 2003; Geb- all other plant species and are unlikely to be completely
hardt et al. 2003; Lukens et al. 2003; Zhu et al. 2003). sequenced in the near future. Pinaceae DNA contents
Similar comparisons have been done for monocots be- vary from 5.8 to 32.2 pg per haploid genome (1C) with
tween sorghum (Sorghum bicolor), barley (Hordeum vul- 22 pg on average for 83 species studied (Murray 1998;
gare), wheat (Triticum aestivum), maize (Zea mays), and Leitch et al. 2001; Bennett and Leitch 2003). Pina-
O. sativa (Klein et al. 2003; Ware and Stein 2003). ceae genomes are 6-fold larger than the human genome
Comparative maps have been constructed among sev- (3.5 pg; Morton 1991) and 100-fold larger than that
eral species within a few important families of plants, of A. thaliana (0.18 pg; Bennett and Smith 1991). In

the absence of a genome sequence for a member of the
Pinaceae, comparative mapping becomes even more
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most genetically studied conifer species and was chosen fir (Brown et al. 2001). Mutations in primer binding
sites have made comparative mapping via a common setas the reference species for comparative mapping in

Pinaceae. Although still far from being a true model of PCR primers practically impossible between conifer
genera. To overcome this problem a computational ap-species, loblolly pine has rich genetic resources, well-

developed genetic and QTL maps (Sewell et al. 1999; proach was used to identify Douglas fir ESTs with high
homology, and putative orthology, to ESTPs mapped inBrown et al. 2001, 2003; Temesgen et al. 2001), and

expressed sequence tag (EST) databases (Allona et al. loblolly pine. A similar approach was used in recent
comparative mapping studies between tomato, potato,1998; Whetten et al. 2001; Kirst et al. 2003). Douglas

fir (Pseudotsuga menziesii [Mirb.] Franco, 2n � 2x � 26) and Arabidopsis (Fulton et al. 2002; Gebhardt et al.
2003). The selected Douglas fir ESTs were used to de-is the most important species of the genus Pseudotsuga

with well-studied genetic and QTL maps (Krutovskii et sign Douglas fir-specific PCR primers to amplify loblolly
pine orthologs in Douglas fir for subsequent genetical. 1998; Jermstad et al. 1998, 2001a,b, 2003). Together,

they are the most commercially important forest tree mapping. This approach allowed comparative mapping
to be extended to the family level and established aspecies in the United States, and a comparative map

between species would have significant practical value. It framework for comparative genomics in Pinaceae. This
study is a part of the Conifer Comparative Genomicsmight also help to establish the origin of the thirteenth

chromosome pair in Douglas fir, the only species not Project (CCGP) formed as an international collabora-
tion at the Institute of Forest Genetics (U.S. Departmenthaving 12 chromosome pairs in the Pinaceae.

Orthologous markers are essential for constructing of Agriculture Forest Service) to develop the ortholo-
gous genetic markers and publicly available referencecomparative maps. Fitch (1970, 2000) defined ortholo-

gous genes as homologous genes whose divergence fol- mapping populations that can be shared among dif-
ferent laboratories to facilitate comparative mappinglows a speciation event, while paralogs are defined as

genes whose divergence follows a duplication event within (http://dendrome.ucdavis.edu/ccgp).
a species. Orthologs are expected to have similar func-
tion, expression, amino acid and nucleotide sequence,

MATERIALS AND METHODS
and genome location in closely related species (e.g.,
Mirny and Gelfand 2002). Two criteria, high sequence Mapping populations and reference maps: The loblolly pine

and Douglas fir mapping populations were three-generationsimilarity and genome location, were used as evidence
outbred pedigrees consisting of four grandparents, two F1for orthology in this study.
parents, and several hundred progeny ( Jermstad et al. 1998,

Restriction fragment length polymorphism (RFLP), 2003; Sewell et al. 1999). The loblolly pine reference map
based on Southern hybridization with single-copy geno- was based on RFLP and ESTP markers as reported in Sewell

et al. (1999), Temesgen et al. (2001), and Brown et al. (2001).mic clones to ensure orthology, has been used broadly
This map is a consensus map between two pedigrees. Syntenicfor comparative mapping in plants (Ahn et al. 1993;
relationships with other Pinus species were established pre-Sherman et al. 1995; Gale and Devos 1998; Yan et al.
viously for most of the 12 linkage groups (Devey et al. 1999;

2003). Comparative mapping using single- or low-copy Brown et al. 2001; Chagné et al. 2003; Komulainen et al.
cDNA as hybridization probes has been also successful 2003). These groups included 302 markers (166 RFLP, 5 iso-

zyme, and 131 EST markers), with a total map length of 1274in the Brassicaceae (Lan et al. 2000; Barnes 2002; Babula
cM. The Douglas fir reference map was based on 376 markerset al. 2003), Solanaceae (Doganlar et al. 2002), Poaceae
[172 RFLP, 77 randomly amplified polymorphic DNA (RAPD),(Smilde et al. 2001; Feuillet and Keller 2002; Laurie
and 2 isozyme markers ( Jermstad et al. 1998) with 20 simple

and Devos 2002), and across different families (Davis sequence repeat (SSR), 4 sequence-tagged site (STS), and 101
et al. 1999; Gebhardt et al. 2003). However, RFLP meth- ESTP markers added in this study (see supplemental Table

S1 at http://www.genetics.org/supplemental/)].ods have had limited application in conifers due to
Markers analyzed: Three types of markers were used togenome complexity and numerous multigene families

develop the loblolly pine and Douglas fir comparative map:(Kinlaw and Neale 1997). Although comparative map-
(1) single- or low-copy RFLP markers developed from loblolly

ping using RFLP markers has been successful in pine cDNA clones, (2) ESTP markers developed in several pine
species (Devey et al. 1999), it is difficult to apply RFLPs and spruce (Picea) species that amplified a single locus in

previous studies, and (3) ESTP and STS markers developedacross different genera in conifers. Many loblolly pine
in Douglas fir. RFLP markers were mapped and sequencedprobes produced a complex multiband pattern in hy-
previously in both species ( Jermstad et al. 1998; Sewell etbridization with Douglas fir genomic DNA (Jermstad
al. 1999). ESTP markers developed in pines and spruces were

et al. 1994, 1998). PCR-amplified EST polymorphisms mapped in both species also according to methods described
(ESTPs) have emerged recently as an alternative to RFLP in Brown et al. (2001). ESTP and STS markers from Douglas

fir are described in detail below. Briefly, EST and STS se-markers for comparative mapping (Brown et al. 2001).
quences were selected initially for evaluation as putative homo-A set of orthologous ESTP markers developed in loblolly
logs to mapped loblolly pine markers on the basis of sequencepine has been established and successfully used in com-
similarity. One PCR primer of each pair was situated preferen-

parative mapping in the genus Pinus (Brown et al. 2001; tially in an untranslated region to favor the selective amplifica-
Chagné et al. 2003; Komulainen et al. 2003). However, tion in Douglas fir of a single member of a gene family. At

the intergeneric level, this strategy precluded the mapping ofonly 22% of these markers were amplified in Douglas
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Douglas fir markers in loblolly pine. However, the orthologous by the PHRED program (Ewing and Green 1998; Ewing et
al. 1998), assembled using the PHRAP program, and viewedrelationships of these loci in both species were assessed by se-

quence similarity of amplified fragments and their conserved through CONSED (Gordon et al. 1998, 2001).
Linkage analysis: Genotypic data were scored visually andmapped location.

Douglas fir EST and STS markers: A cDNA library was ob- tested for Mendelian segregation. Markers showing only slight
segregation distortion (0.01 � P � 0.05) were not excludedtained from 1-month-old Douglas fir seedlings in collaboration

with Integrated Genomics (Chicago). Total RNA was extracted from linkage analysis because recombination estimators are
still valid when distortion is observed at only one locus of afrom �5 g of ground tissue following the protocol of Chang

et al. (1993). Double-stranded cDNA was prepared using the linked pair of loci (Bailey 1961; Ott 1991). ESTP markers
were added to the existing segregation data ( Jermstad et al.Universal RiboClone cDNA Synthesis System (Promega, Madi-

son, WI), filtered through a Sephacryl S-400 column, ligated 1998) and the linkage analysis was repeated. A sex-averaged
consensus map was produced using JOINMAP versions 1.4into the EcoICR I-cut dephosphorylated pGEM-3Z sequencing

vector, and electroporated into Escherichia coli DH5�. A total and 2.0 (Stam 1993; Stam and Van Ooijen 1995). Linkage
groups were assigned at the LOD thresholds of 4 and 5. Group-of 5031 EST sequences were obtained and assembled into

contigs. These ESTs and contigs and four Douglas fir STSs ing was almost identical at both thresholds, except a few loci
unmapped at LOD � 5 and a spurious merging of two appar-available from GenBank were used to query the December

2002 assembly of loblolly pine ESTs, which is accessible at ently independent linkage groups at LOD � 4. Therefore, we
used mainly LOD � 4 for grouping, except two linkage groupshttp://pine.ccgb.umn.edu, using BLASTn and tBLASTx. The

assembly contained 20,456 contigs and singletons derived that were assembled at LOD � 5. The procedure for ordering
markers was the same as described in Jermstad et al. (1998).from 59,430 sequences from six xylem libraries. Douglas fir

sequences homologous to mapped loblolly pine loci were se- The Kosambi function was used to estimate map distances.
Nomenclature and informatics: Mapped loci were named ac-lected for further study, if they showed nucleotide similarity

�80% and expected values of �E-15 over a minimum of 100 bp. cording to guidelines for submitting data to the TreeGenes data-
base (http://dendrome.ucdavis.edu/Tree_Page.htm). A mappedPCR and detection of polymorphisms: PCR primers were

designed using the Douglas fir EST and STS sequences homol- marker is defined by its experiment, source, accession number,
and locus identifier fields. For example, an ESTP derived fromogous to mapped loblolly pine loci. Primers were designed

using the computer program GeneRunner v3.04 (Hastings the loblolly pine cDNA clone PtIFG_8732 and mapped in both
loblolly pine and Douglas fir in this study is referenced asSoftware, Hudson, NY) to yield products of 300–500 bp. A
IFGREF_estPtIFG_8732_a and IFGLXD_estPtIFG_8732_a in thetypical reaction volume was 25 �l and included 10 mm TRIS-
loblolly pine and Douglas fir maps, respectively. For brevity,HCl pH 8.3, 50 mm KCl, 1.5 mm MgCl2, 200 �m of each dNTP,
however, experiment fields have been omitted (Figure 1).1 �m of each primer, 12 ng of DNA template, and 0.5 units

of HotStart Taq DNA Polymerase from QIAGEN (Valencia,
CA). Following HotStart Taq activation (94� for 15 min), PCR
amplification involved denaturation at 94� for 1 min, anneal- RESULTS
ing for 0.5 min, and extension for 2 min. The annealing

Orthologous RFLP and ESTP markers derived fromtemperature during the initial cycles was lowered from X to
Y by 1� every second cycle. Standard PCR conditions (X � 65� pine and spruce species: Twenty-six RFLP markers were
and Y � 60� or 55�) were used for most ESTP markers, al- mapped in both loblolly pine and Douglas fir (Jermstad
though for primer pairs that failed to amplify, the stringency et al. 1998; Sewell et al. 1999). Seven markers met criteriawas reduced (X � 60� and Y � 50�). An additional 30 cycles

of orthologous markers. Four markers (PtIFG_2006_a,of amplification were performed upon reaching the final an-
PtIFG_2356_a, PtIFG_2988_a, and PtIFG_2540_a) re-nealing temperature (Y) followed by a final extension at 72�

for 10 min. Amplification products from the parents of the vealed more than a single locus, but were mapped into
Douglas fir pedigree were screened for polymorphism in 2% syntenic regions and can be also conditionally consid-
agarose gels and by denaturing gradient gel electrophoresis ered as orthologous markers.
(DGGE) using a 15–45% denaturing gradient and a DCode

The ESTP primer pairs developed from pine andapparatus (Bio-Rad, Hercules, CA) according to Temesgen et
spruce species amplified Douglas fir templates with vari-al. (2000). Finally, ESTP segregation data were collected for
able success, ranging from 24% amplification successthe 94 progeny of the Douglas fir pedigree.

DNA sequencing: To support the possibility that PCR mark- with primers derived from loblolly pine to 93% success
ers amplified in Douglas fir were orthologs to the mapped with primers derived from Norway spruce, Picea abies
loblolly pine markers, amplifications products were directly (L.) Karst. (Table 1). In total, 55 ESTPs from the foursequenced and compared to the original Douglas fir and lob-

species were mapped in Douglas fir, but only 11 markerslolly pine sequences. To use direct sequencing without cloning
met the criteria of orthologous markers.33 markers were selected that amplified a single locus and

had no amplification background, such as light additional Orthologous ESTP and STS markers derived from
bands that may interfere with sequencing. The selected mark- Douglas fir: Of 5031 ESTs analyzed, 1992 sequences
ers represented 26 putative orthologous markers (5 loblolly were assembled into 621 contigs. There were an addi-pine-based ESTP, 18 Douglas fir-based ESTP, and 3 STS mark-

tional 55 singletons and 2984 singlets. All ESTs anders) and 7 nonorthologous Douglas fir-based ESTP markers.
contigs were compared to the genetically mapped lob-Four alleles at each locus were sequenced using DNA extracted

from the haploid megagametophyte tissue of four Douglas fir lolly pine ESTs, and Douglas fir sequences with �80%
seeds. DNA sequences were obtained from both strands with nucleotide identity were used for PCR primer design.
the primers used for PCR amplification and the ABI PRISM Most primers (97%) designed in this manner amplified
BigDye Primer Cycle Sequencing Kit v.3.1 (Applied Biosys-

a single Douglas fir product of expected size, and 39tems, Foster City, CA). Fragments were detected on an ABI
markers were mapped. Twenty-one of the 39 markers3730 DNA Analyzer at the Genomics Facility Center at the

University of California, Davis. Raw sequences were base called met the criteria of orthologous markers (Table 1).
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TABLE 1

RFLP, ESTP, and STS markers screened in Douglas fir

Amplified Mapped Orthologous
Marker Species Screened (%)a (%)a (%)b

RFLP Loblolly pine (Pinus taeda)c 171 122 (71)h 26 (15) 11 (42)
ESTP Loblolly pined 156 37 (24) 30 (19) 6 (20)

Maritime pine (P. pinaster)e 50 38 (76) 9 (18) 1 (11)
Black spruce (Picea mariana)f 50 42 (84) 11 (22) 3 (27)
Norway spruce (P. abies)g 15 14 (93) 5 (33) 1 (20)
Total pine and spruce ESTPs 271 131 (48) 55 (20) 11 (22)
Douglas fir (Pseudotsuga menziesii) 75 73 (97) 39 (52) 21 (54)

STS Douglas fir 4 4 (100) 4 (100) 3 (75)
Total 521 330 (63) 124 (24) 46 (37)

a Percentage of amplified markers out of total number of markers screened.
b Percentage of orthologous markers out of mapped markers.
c Devey et al. (1991, 1994); Jermstad et al. (1994); http://dendrome.ucdavis.edu/treegenes.html.
d Brown et al. (2001); Temesgen et al. (2001); http://dendrome.ucdavis.edu/Gen_res.htm.
e Chagné et al. (2003); http://www.pierroton.inra.fr/genetics/pinus/primers.html.
f Perry and Bousquet (1998a,b).
g Schubert et al. (2001).
h Number and percentage of the loblolly pine cDNA probes that cross-hybridized to the Douglas fir genomic

DNAs ( Jermstad et al. 1994).

Three Douglas fir genomic sequences available from The identity between Douglas fir and loblolly pine se-
quences was 89 � 4% for 26 orthologous and 83 � 2% forGenBank had orthologs among mapped loblolly pine

ESTs. They were mapped and met the criteria of or- 7 nonorthologous markers on average (t -test P � 0.012).
Orthologous markers and homologous linkage groups:thologous markers (Table 1).

Douglas fir linkage map: In total, 376 markers (172 Comparison of Douglas fir and loblolly pine maps re-
vealed 10 linkage groups (LG1–LG10) in loblolly pineRFLPs, 77 RAPDs, 20 SSRs, 2 isozymes, 4 STSs, and 101

ESTPs) were mapped to 22 linkage groups consisting that shared 2–10 orthologous markers with 12 appar-
ently syntenic linkage groups in Douglas fir based onof 3 or more markers (Table 1). There were 17 major

linkage groups that consisted of 5 or more markers 46 orthologous markers (Table 2, Figure 1). Primer
sequences and PCR conditions that were used to amplify(Figure 1). The total length of the linkage map was

1664 cM for the 17 major linkage groups and 1859 cM orthologous markers are presented in the supplemental
Table S2, and their homology analysis and annotationfor all 22 linkage groups.

Sequence of PCR-amplified ESTP and STS markers: in the supplemental Table S3 (see http://www.genetics.
org/supplemental/). Markers mapped in pine speciesPCR products for 26 putative orthologs (5 ESTPs ampli-

fied using primers based on loblolly pine ESTs, 18 ESTPs other than loblolly helped to strengthen the compara-
tive mapping. For example, the estPpINR_RS01G05_aamplified using primers based on Douglas fir ESTs, and

3 STSs) and 7 nonorthologs, which were amplified and marker was mapped in maritime pine (P. pinaster Ait;
Chagné et al. 2003) and in Douglas fir, but not in lob-mapped in Douglas fir, were sequenced and compared

to the original Douglas fir and loblolly pine EST or lolly pine. However, in both species this marker was
mapped in the linkage group that was homologous togenomic sequences. All sequences confirmed the iden-

tity and origin of amplified markers. The orthology of the same LG1 in loblolly pine based on other ortholo-
gous markers and therefore corroborated syntenic rela-all 26 putative orthologs, from which PCR amplification

products were sequenced, was also confirmed (Table 2). tionships between these groups (Table 2; Figure 1).

�
Figure 1.—Genetic maps of loblolly pine (Pinus taeda L.), Pt, and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco), Pm.

Orthologous markers are highlighted by larger, boldface, italicized, and underlined type and are connected by lines, except
four of them that were mapped in pine species other than loblolly, but in the same syntenic linkage group (LG)
[estPpINR_RS01G05_a was mapped in LG1 in Pinus pinaster (Chagné et al. 2003), and estPmaLU_SB42_a, estPaTUM_PA0053_a,
and estPmaLU_SB21_a were mapped in LG6, LG8, and LG10 in Picea abies, respectively (our unpublished data)]. The loci
were named following guidelines for the TreeGenes genome database (http://dendrome.ucdavis.edu/Tree_Page.htm; see also
materials and methods). Abbreviations placed after the underscore in some loblolly pine marker names show other conifer
species and syntenic linkage groups in which these markers were also mapped. For instance, Pe1 in the PtIFG_2006_A/Pe1
marker name in the linkage group Pt-1 means that the PtIFG_2006_A marker was also mapped in the Pinus elliottii syntenic
linkage group 1. Similarly, Pp stands for P. pinaster, Pr for P. radiata, Ps for P. sylvestris, and Pa for Picea abies.
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Similarly, the estPmaLU_SB42_a marker was mapped in fore have revealed paralogs or different members of
multigene families. This can be easily expected due toNorway spruce (our unpublished data) and Douglas fir,

but not in loblolly pine. The linkage group containing the complexity of conifer genomes (Kinlaw and Neale
1997). This is also supported by lower levels of identitythis marker in both Norway spruce and Douglas fir was

homologous to LG6 in loblolly pine based on other observed between Douglas fir and loblolly pine sequences
for nonorthologous (83%) vs. orthologous (89%) mark-markers (Table 2; Figure 1). The total lengths of the

syntenic linkage groups that shared orthologous mark- ers. There were a few ESTP primers that amplified two
products that were mapped in the same region, showingers were 1125 cM for 10 groups in loblolly pine and

1421 cM for 12 groups in Douglas fir. that tandem duplication might be common in Pinaceae
genome evolution. Paralogs complicate construction ofSeven of 12 linkage groups in Douglas fir had three

or more orthologous markers that allow inspection of comparative maps in Pinaceae, but are also of great
interest for studying evolution of multigene families.colinearity. Gene order was completely colinear in the

syntenic regions of 5 of these 7 groups (LG1, LG3, LG4, Pseudotsuga and Larix are the next closest genera to
Pinus after Picea on the basis of phylogenetic studiesLG5, and LG8) and partly colinear in LG6 (Figure 1).

Local noncolinearity was observed only in two groups, (Wang et al. 2000; Rydin et al. 2002). However, the
karyotype of Douglas fir is unique in Pinaceae. It hasLG6 and LG10 (Figure 1). There were two cases when

two linkage groups in Douglas fir showed synteny with a 13 chromosome pairs (2n � 26), while all other species,
including closely related Pseudotsuga and Larix species,single linkage group in loblolly pine: (1) Pm-3 and Pm-13

vs. Pt-3 (LG3) and (2) Pm-9 and Pm-11 vs. Pt-9 (LG9). have only 12 pairs (2n � 24). The karyotype of Douglas
fir includes 2 telocentric chromosomes that are strik-
ingly dissimilar to the other 11 chromosomes (5 meta-

DISCUSSION
centric and 6 submetacentric chromosomes). Their length
is also less than one-half that of the metacentric chromo-Comparative mapping in Pinaceae: The macrosyntenic

relationships between species of two genera of the family somes (Doerksen and Ching 1972), suggesting that
these two chromosomes originated by centromeric fis-Pinaceae were established for nearly all major linkage

groups. Ten homologous linkage groups were identified sion of one of the metacentric chromosomes. We could
not resolve unambiguously the question of the originin loblolly pine that shared two or more orthologous

markers with Douglas fir linkage groups (Figure 1). The of the thirteenth chromosome pair in Douglas fir, but
our data allow some speculation. Douglas fir linkagesame 10 homologous linkage groups were identified

between loblolly pine and maritime pine (Chagné et groups Pm-3 and Pm-13 were syntenic with loblolly pine
LG3, as were Pm-9 and Pm-11 with LG9 (Figure 1). Oneal. 2003). All 12 homologous linkage groups were identi-

fied between loblolly pine and Scots pine, but only 10 of these syntenic linkage pairs could represent two dif-
ferent chromosomes in Douglas fir. Orthologous mark-linkage groups shared two and more orthologous mark-

ers (Komulainen et al. 2003). Therefore, the intergeneric ers mapped in these groups would be good candidates
for FISH to resolve this question.maps in this study have identified practically all the same

homologous linkage groups as were found in the intra- Potential applications of comparative-mapping results:
Comparative mapping is an important tool for integrat-generic pine maps.

Chromosomal evolution in Pinaceae: The high level ing genetic data among related taxa. It helps to consoli-
date genetic maps and bridge linkage gaps. For instance,of synteny and colinearity among species within the

Pinaceae supports the general hypothesis based on cyto- comparative mapping has helped to assign several small
unlinked groups to the larger homologous linkagegenetic data that major chromosomal rearrangements

have not been frequent in the evolution of the Pinaceae groups in pine species (Brown et al. 2001; Komulainen
et al. 2003). The loblolly pine 	 Douglas fir comparative(Prager et al. 1976). Except in a few species, there is

no evidence for major chromosomal rearrangement or map now integrates the mapping data between different
genera of the family Pinaceae and also between thepolyploidy in Pinaceae (Prager et al. 1976). We also

observed substantial colinearity between genera at the two most important tree species in North America. For
example, the QTL mapped in loblolly pine (Sewell etmacrosyntenic level. Local noncolinearity was observed

only in LG6 and LG10 and could be easily explained al. 2000, 2002; Brown et al. 2003) and in Douglas fir
(Jermstad et al. 2001a,b, 2003) can now be comparedby a single inversion (Figure 1). However, it would be

preliminary to speculate about local rearrangements across different genera the same way as it was done across
different species within genus Eucalyptus (Marques etand microcolinearity from these data. Local noncolin-

earity might also result from mapping paralogs and/or al. 2002) and Pinus (Chagné et al. 2003). Mapped or-
thologous markers that consistently associated with theother members of multigene families in the same syn-

tenic regions. Approximately 40% of all ESTP, STS, and same QTL across different species can be used to con-
firm and verify QTL and to identify candidate genes forRFLP markers tested could serve as orthologous loci.

Some of the remaining nonorthologous markers were quantitative traits. The orthologous markers that have
been developed and mapped in this study could alsoassayed under less stringent conditions and may there-
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